skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "James, Tre'Shunda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the differences in the electrojet and Birkeland current systems during summer and winter solstice and the effect of F10.7. The difference in solar illumination of the polar ionosphere during the winter versus summer solstice results in significantly higher conductivity in the summer polar ionosphere. As expected, the currents are larger during the summer than during the winter. The rela- tionship between the electrojets and the Birkeland current systems is essentially constant across seasons, as expected if the ionospheric electrojets close the Birkeland currents. The magnitude of F10.7 is an indicator of the level of solar-generated ionospheric conductance, therefore, one would expect larger ionospheric currents during periods of larger F10.7. This holds true for the summer solstice periods, however, the opposite trend is observed during the winter solstice periods. We provide an explanation for this finding based on the con- trol of the dayside merging rate by the magnetosheath flow pattern. 
    more » « less